
The 7th Annual Report on Global

Open Source Software Development

State of
the

2021

Software
Supply Chain

PRESENTED BY

Contents
Introduction ..3

CHAPTER 1

Open Source Supply, Demand, and
Security ... 5

Open Source Supply ..6

Open Source Demand ..8

Open Source Security ...9

Software Supply Chain
Attacks Increase 650% ..10

Front Page News ...11

CHAPTER 2

Understanding Exemplary and Non-
Exemplary Open Source Projects15

Open Source Project Quality Metrics16

Quality Metric Comparison18

Research Findings ...19

Guidance for Open Source P
roject Owners and Contributors 20

Guidance for Enterprise
Development Teams ... 20

CHAPTER 3

Peer Practices Associated With Micro and
Macro Dependency Management21

To Update or Not:
An Empirical View of Micro
Dependency Management 22

Selecting the Best Projects:
Reflections on Macro
Architectural Decisions .. 29

Conclusions and
Practical Recommendations 29

CHAPTER 4

 Software Supply Chain Maturity 30

How Mature are Today’s
Software Supply Chains? ...32

Reality vs. Perception on
Software Supply Chain Maturity 32

CHAPTER 5

Emergence of Software Supply Chain
Regulation and Standards33

What’s Happening in the United States? 34

What’s Happening
in the United Kingdom? ..35

What’s Happening
in Germany? ...36

What’s Happening
in the European Union? ...36

What’s Happening Globally?37

About the Analysis ...38

Acknowledgments ...39

22021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Introduction
In 1849, French writer Jean-Baptiste Alphonse Karr

famously said, “the more things change, the more

they stay the same.” While he obviously wasn’t

talking about open source software (OSS), digital

supply chains, or application innovation during

a global pandemic, he might as well have been.

Indeed, in the year since we last published our

State of the Software Supply Chain research, so

much has changed in the world of software devel-

opment, and yet, so much has stayed the same.

My oh my, how things have changed. COVID-19 fun-

damentally transformed how people live and work,

how companies interact with customers, how custom-

ers shop and buy, and how physical and digital

supply chains function. As the economic importance

of digital innovation accelerated during the global

pandemic, so too did the number of cyber-attacks

aimed at exploiting software supply chains.

And yet, much has stayed the same. Top-

performing companies like Apple, Goldman Sachs,

and Amazon — and more recently, Zoom, Peloton,

and Wayfair have mastered three key competitive

advantages: knowing how to use open source and

third-party innovation at scale, integrating security

and risk controls into multiple phases of the

software supply chain, and releasing higher quality

code faster than their competitors.

Now in its seventh year, Sonatype’s 2021 State

of the Software Supply Chain Report blends a

broad set of public and proprietary data to reveal

important findings.

Together with our partners, we are proud to share

this research. We hope that you find it valuable.

Open source
supply is accelerating.
The top four open source

ecosystems released a

combined 6,302,733 new

versions and introduced

723,570 brand new

projects. Collectively,

these communities now

contain a combined

37,451,682 different

versions of components,

representing a 20% year

over year (YoY) growth

in global supply of open

source.

Open source
demand is exploding.
In 2021 developers around the

world will request more than 2.2

trillion open source packages

from these same four ecosys-

tems, representing a 73% YoY

growth in developer downloads

of open source components.

Despite the growing volume of

downloads, the percentage of

available components utilized

in production applications is

shockingly low.

Open source vulnerabilities are most
pervasive in popular projects.
29% of popular projects contain at least one known security vulnerabil-

ity. Conversely, only 6.5% of non-popular projects do so. This dichotomy

suggests that the vast majority of security research (blackhat and

whitehat) is focused on finding and reporting vulnerabilities in projects

that are most commonly utilized.

37 Million
OSS component
versions now
available

6 Million
new versions
introduced in
past year

73%
YoY growth
of component downloads

29% 6.5% of popular projects
contain known
vulnerabilities,
but only

of non-popular
projects contain
known vulnerabilities

32021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Some projects are
better than others.
To avoid stale dependencies

and minimize security risks

associated with third-party

open source, software

engineering teams should

actively embrace projects that

consistently demonstrate low

mean time to update (MTTU)

values and high OpenSSF

Criticality scores.

Dependency management practices
vary widely among teams.
On average, enterprise Java applications utilize 10% of

the components that are available for download in the

Maven Central Repository. However commercial engi-

neering teams actively update only 25% of components

utilized. Such efforts

are highly variable and

frequently suboptimal,

yet there is wisdom in

the crowd that can be

distilled. Newer

versions of projects

are generally better,

but not always best.

Standardizing
architectural guidance
is a path to huge
efficiency gains.
Intelligent automation that

standardizes engineering

teams on exemplary open

source projects could

remove 1.6M hours and

$240M of real world waste

spread across our sample

of 100,0001 production

applications. Extrapolated

out to the entire software

industry, the associated

savings would be billions.

Supply chain attacks are
increasing exponentially.
 In 2021 the world witnessed a 650%

increase in software supply chain attacks,

aimed at exploiting weaknesses in

upstream open source ecosystems. For

perspective, the same statistic was 430%

in the 2020 version of the report.

650%
YoY increase in cyber-
attacks aimed at open
source suppliers

Only 25%
of utilized components
are updated actively

1 100,000 anonymized, validated applications scanned by publicly available and commercial vulnerability analysis tools.

Intelligent automation
could save companies

$192,000
 per year

702
IT professionals
surveyed

There is a disconnect between subjective survey
feedback and objective data.
People believe they are doing a good job remediating defective components

and indicate that they understand where risk resides. Objectively, research

shows development teams lack structured guidance and frequently make

suboptimal decisions with respect to software supply chain management.

42021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

CHAPTER 1

Open Source Supply,
Demand, and Security

The universal desire for faster innovation funda-

mentally requires that software developers reuse

code frequently and efficiently. This, in turn, has led

to a critical dependence on OSS libraries borrowed

from third-party ecosystems. These third-party

components and packages represent the building

blocks of modern software development. But, what

does open source supply look like? What are the

demand dynamics? What is the relative quality and

security of third-party code borrowed from open

source suppliers?

Figure 1.1 summarizes statistics on supply,

demand, usage, and security for the Java,

JavaScript, Python, and .NET ecosystems. There

are an order of magnitude more project versions

than there are projects, with the average project

having published eight to 12 versions, depending

on the ecosystem. Older projects can have tens,

or even hundreds of versions. Furthermore,

a minefield of known (and unknown) security

risks lurk within the 37 million available project

versions. Such risk is far more prominent in

popular projects.

Open Source Supply
The global supply of open source libraries contin-

ues to grow exponentially, fueled by new versions

of existing projects constantly being released,

and by the creation of altogether new projects.

Currently, the top four open source ecosystems

contain a combined 37,451,682 components and

packages. These same communities released a

combined 6,302,733 new versions of components /

packages over the past year and have introduced

723,570 brand new projects in support of 27 million

developers worldwide.

Java
As of July 31, 2021, there are 430,995 unique

projects (group-artifacts) available in the Maven

Central Repository, up 13% from last year. This

public catalog of Java components now offers

developers a total of 7.3 million different versions

(group-artifact-versions) of projects to choose

from, up 19% from last year.

In the past year alone, project owners released

more than 1.1 million new versions of existing

components, and introduced 136,000 brand new

projects to service and support approximately

eight million Java developers.

FIGURE 1.1

2021 SOFTWARE SUPPLY CHAIN STATISTICS

ECOSYSTEM

TOTAL

PROJECTS

TOTAL

PROJECT VERSIONS

ANNUAL

DOWNLOAD VOLUME

YOY

DOWNLOAD GROWTH

ECOSYSTEM

PROJECT UTILIZATION

VULN DENSITY FOR

UTILIZED VERSIONS

10% Most Popular

VULN DENSITY FOR

UTILIZED VERSIONS

90% Least Popular

Java 431k 7.3M 457B 71% 15% 23% 4%

JavaScript 1.9M 21M 1.5T 50% 2% 39% 8%

Python 336K 3M 127B 92%2 4% 38% 8%

.NET 338K 5.6M 78B 78% 2% 15% 6%

Totals/
Averages

3M 37M 2.2T 73% 6% 29% 6.5%

A minefield of
known (and unknown)
security risks lurk within
the 37 million available
project versions.

2 YoY growth estimated based on known PyPi downloads from March to August 2021 as queried from pypistats.org.
62021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://pypistats.org/packages/__all__

JavaScript
As of July 31, 2021 there were 1,864,696 JavaScript

packages available in the npm repository, up 16%

from last year. This public catalog of JavaScript

packages offers developers a total of 21,320,796

different versions. In the past year alone, npm

project owners released 3,797,675 new versions

of packages, and introduced 405,243 brand new

projects to service and support approximately 12

million JavaScript developers.

Python
336,402 packages are available in the Python

Package Index (PyPI), up 18% from last year. This

public catalog of Python packages offers develop-

ers a total of 3,035,265 different versions. In the

past year alone, python project owners released

556,327 new versions of packages, and introduced

93,032 brand new projects to service and support

approximately eight million Python developers.

.NET
338,423 open source projects are available in the

NuGet gallery, up 14% from last year. This public

catalog of .net packages offers developers a total

of 5,698,716 different versions. In the past year

alone, the NuGet gallery released 756,444 new

versions of packages, and introduced 87,268 brand

new projects.

FIGURE 1.2

AVAILABLE SUPPLY OF OPEN SOURCE, 2021

72021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

Open Source Demand
In 2021, developers around the world will borrow

more than 2.2 trillion open source packages

or components from third-party ecosystems

for two simple reasons: it makes life easier for

software developers and it accelerates the pace

of innovation.

Java
Through the first seven months of 2021, 267 billion

Java components were downloaded from the

Maven Central Repository. At this rate, the volume

3 pypistats.org

for 2021 is projected to be over 457 billion,

a 71% YoY increase.

JavaScript
In 2020, JavaScript developers requested more

than one trillion packages from npmjs. The

volume for 2021 is expected to reach 1.5 trillion,

a 50% YoY increase.

Python
In 2020, Python developers downloaded 66 billion3

packages from PyPi. For the full year of 2021, PyPi

download volume is expected to be 127 billion

packages. YoY growth of PyPi download volume is

estimated to be 92%

.NET

.NET developers were also eager to consume

OSS packages over the past year. Developers

downloaded 44 billion NuGet packages in 2020.

In 2021 developers will download more than 78

billion packages, representing a 78% YoY growth.

FIGURE 1.3

INCREASE IN DOWNLOADS
Year Over Year 2020 – 2021

FIGURE 1.4

ANNUAL DOWNLOAD VOLUMES, 2021

82021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

http://pypistats.org

FIGURE 1.5

VULNERABLE RELEASE DENSITY VS. POPULARITY

Open Source Security
The amount of third-party code flowing through

software supply chains is massive. But is it secure?

Are certain open source ecosystems more or less

risky? Are certain projects safer than others? Are

popular projects more or less likely to have known

vulnerabilities? Here’s what the data reveals.

When examining the top 10% of the most popular

Java, JavaScript, Python, and .NET projects, 29% of

them contain at least one known security vulnera-

bility. Conversely, when examining the remaining

90% of less popular projects, only 6.5% of them

contain known vulnerabilities. These findings

indicate that the vast majority of security research

(blackhat and whitehat) is focused on finding and

reporting vulnerabilities in projects that are most

commonly utilized.

In addition to studying the difference in vulnera-

bility density between popular and non popular

open source projects, we also present below the

92021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

aggregate vulnerability density for each of the

four ecosystems.

Java (Maven)
As of July 31, 2021, 612,988 (8.4%) of all compo-

nent versions housed in Maven Central contain at

least one known security vulnerability. To exclude

low level security issues, we determined severity

based on the Common Vulnerability Scoring

System (CVSS), for medium (5), high (7), and critical

(9), Of the issues identified:

 ⊲ 356,808 (4.9%) had a CVSS of 9 or higher

 ⊲ 488,826 (6.7%) had a CVSS of 7 or higher

 ⊲ 598,364 (8.2%) had a CVSS of 5 or higher

For the past eight years, Sonatype has also

analyzed the patterns and practices associated

with Java components being downloaded from

Maven Central. In 2020 and through the first seven

months of 2021, 8% of the downloads had at least

one known vulnerability.

JavaScript (npm)
As of July 31, 2021, 459,576 (2.2%) project versions

housed in npm contain at least one known security

vulnerability. Of the issues identified:

 ⊲ 250,002 (1.2%) had a CVSS of 9 or higher

 ⊲ 350,737 (1.6%) had a CVSS of 7 or higher

 ⊲ 450,734 (2.1%) had a CVSS of 5 or higher

Notably, however, of the nearly 1.9 million

JavaScript top level projects available, only 2% of

those are being used with any regularity.

Python (pypi)
As of July 31, 2021, 147,994 (0.5%) package versions

housed in the PyPI repository contained at least one

known security vulnerability. Of the issues identified:

 ⊲ 81,731 (.4%) had a CVSS of 9 or higher

 ⊲ 111,970 (.4%) had a CVSS of 7 or higher

 ⊲ 143,902 (.5%) had a CVSS of 5 or higher

.NET (Nuget)
As of July 31, 2021, 112,031 (2%) of package

versions housed in the NuGet Gallery contained

at least one known security vulnerability. Of the

issues identified:

 ⊲ 27,288 (.5%) had a CVSS of 9 or higher

 ⊲ 99,096 (1.7%) had a CVSS of 7 or higher

 ⊲ 110,764 (1.9%) had a CVSS of 5 or higher

Software Supply Chain
Attacks Increase 650%
Members of the world’s open source community

are facing a novel and rapidly expanding threat

that has nothing to do with passive adversaries

exploiting known vulnerabilities in the wild — and

everything to do with aggressive attackers implant-

ing malware directly into open source projects to

infiltrate the commercial supply chain.

Legacy software supply chain “exploits," such as

the now infamous 2017 Struts incident at Equifax,

prey on publicly disclosed open source vulnera-

bilities that are left unpatched in the wild. Next-

generation software supply chain “attacks” are far

more sinister, however, because bad actors are no

longer waiting for public vulnerability disclosures

to pursue an exploit. Instead, they are taking the

initiative and injecting new vulnerabilities into

open source projects that feed the global supply

chain, and then exploiting those vulnerabilities

FIGURE 1.6

NEXT GENERATION SOFTWARE SUPPLY CHAIN ATTACKS (2015 – 2021)
Dependency Confusion, Typosquatting, and Malicious Code Injection

102021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

before they are discovered. By shifting their attacks

“upstream," bad actors can gain leverage and the

crucial benefit of time that that enables malware to

propagate throughout the supply chain, enabling

far more scalable attacks on “downstream” users.

According to security researchers at the University

of Bonn, SAP Labs France, and Fraunhofer FKIE,

“From an attacker’s point of view, [large scale,

public internet-based] package repositories

represent a reliable and scalable malware distribu-

tion channel. Thus far, Node.js (npm) and Python

(PyPI) repositories have been the primary targets

of malicious packages, supposedly due to the fact

that malicious code can be easily triggered during

package installation."4

From February 2015 to June 2019, 216 software

supply chain attacks were recorded. Then,

from July 2019 to May 2020, the number of

attacks increased to 929 attacks. However,

in the past year, such attacks represented a

650% YoY increase (see Figure 1.6 above).

Dependency Confusion
The most common type of attack in 2021 has been

Dependency Confusion (aka namespace confusion).

The novel, highly targeted, attack vector allows

unwanted or malicious code to be introduced

downstream automatically, without relying on

typosquatting or brandjacking techniques. The

technique involves a bad actor determining the

names of proprietary (inner source) packages

utilized by a company’s production application.

4 arxiv.org/pdf/2005.09535.pdf

5 12,000 statistic counts PyPI and npm 5k package flood as a single attack; not multiple attacks.

Equipped with this information, the bad actor then

publishes a malicious package using the exact

same name, and a newer semantic version, to a

public repository, like npmjs, that does not regulate

namespace identity. At this point, certain pipeline

build tools will automatically fetch the newer,

intentionally malicious version. In the past year,

namespace confusion has alone accounted for

instances of attempted or confirmed supply chain

attacks.5 This attack vector relies on the long estab-

lished convention in some programming languages

to fetch the “LATEST” version of any package.

Typosquatting
Typosquatting was the second most common tech-

nique over the past year. This indirect attack vector

preys on developers making otherwise innocent

typos when searching for popular components. For

example, if a developer accidentally types “electorn”

when their intention is to source “electron," they

might accidentally install a malicious component of a

similar name (see electorn, September 2020).

Malicious Source Code Injections
Malicious Source Code Injections are another type

of attack that have been less prevalent in the past

year compared to previous years. Such attacks

involve injecting malicious source code directly into

an open source project’s repository, and have been

conducted in various ways, including:

 ⊲ stealing credentials from a project maintainer (see

rest-client, 8/19)

 ⊲ releasing new versions of a project to a public

repository (see bootstrap-sass, 4/19)

 ⊲ contributing pull requests to a project that

includes malicious code (see event-stream, 11/18)

 ⊲ tampering with open source developer tools that

inject malicious code into downstream applica-

tions (see Octopus Scanner, 5/20).

With code injections, it is likely that no one knows

the malware is there, except for the person that

planted it. This approach allows adversaries to

surreptitiously “set traps” upstream, and then carry

out attacks downstream once the vulnerability has

moved through the supply chain and into the code

bases of thousands of companies.

Front Page News
In the past year, numerous high-profile and

prominent attacks demonstrated how supply chain

threats affect not only third-party application level

libraries and tools, but also first-party source code.

The European Union’s Cybersecurity Agency

(ENISA) predicts these types of supply chain attacks

are expected to increase 4x in 2021.

SolarWinds — December 2020
The massive SolarWinds Orion attack publicized in

December 2020 marked the most notable supply

chain attack of the past year. The attack started

with threat actors gaining access to SolarWinds’

internal development tools to inject malicious

code into SolarWinds’ Orion update binaries.

These trojanized updates delivered a backdoor

known as SUNBURST and Solorigate, to systems

running Orion platform versions. The impact?

112021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

http://arxiv.org/pdf/2005.09535.pdf
https://blog.sonatype.com/pypi-and-npm-flooded-with-over-5000-dependency-confusion-copycats
https://blog.sonatype.com/sonatype-spots-malicious-npm-packages
https://www.securityweek.com/backdoor-found-rest-client-ruby-gem
https://www.securityweek.com/backdoor-found-rest-client-ruby-gem
https://www.zdnet.com/article/backdoor-code-found-in-popular-bootstrap-sass-ruby-library/
https://blog.sonatype.com/open-source-software-is-under-attack-new-event-stream-hack-is-latest-proof
https://securitylab.github.com/research/octopus-scanner-malware-open-source-supply-chain/
https://blog.sonatype.com/what-constitutes-a-software-supply-chain-attack

FIGURE 1.7

NEXT GENERATION SOFTWARE SUPPLY CHAIN ATTACKS
July 2019 – July 2021

122021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

Roughly, 18,000 customers automatically pulled

these malicious updates, exposing the networks

of large companies and government entities like

the National Nuclear Security Administration and

enabling the bad actors to explore and exploit their

networks at will over the course of many months.

By attacking the SolarWinds software supply chain

and mingling their malicious code with the legitimate,

trusted code that was delivered to their clients,

attackers were able to plant backdoors on the sys-

tems of tens of thousands of SolarWinds’ customers.

Namespace Confusion — February 2021
In February 2021, news broke of a researcher,

Alex Birsan, hacking over 35 big tech firms in a

novel supply chain attack dubbed “dependency

confusion.” The name of this attack refers to the

inability of your development environment to

distinguish between a private, internally-created

dependency in your software build, and a package

by the same name available in a public software

repository.

In other words, should an attacker register the

name of your private, internally-used dependency

on a public repository, such as npmjs, your software

development tool may inadvertently pull in the

attacker’s malicious dependency as opposed to

your legitimate one.

Within 72 hours after news of the namespace attack

vector became public, automated malware detec-

tion services observed 300+ copycats emerging

from other researchers interested in earning a bug

bounty. One week later, the number of copycat

attacks increased to 575. The following week, it

was 750. By March 15, 2021, Sonatype’s automated

malware detection service had observed more than

10,000 dependency confusion copycats having

infiltrated npm and other ecosystems.

Not all copycats were benign proof of concepts.

In search of bug bounty payouts, thousands were

published by bad actors with malicious intent.

Some of the copycats were even aimed as “vigi-

lante vandalism” on the open source repositories.

“The fact that so much of the npm ecosystem is

not namespaced has actually created potential

build time malware injection possibilities. If I know

FIGURE 1.8

A TIMELINE OF DEPENDENCY CONFUSION
July 2020 – March 2021

132021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

https://www.bleepingcomputer.com/news/security/us-govt-fireeye-breached-after-solarwinds-supply-chain-attack/
https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations
https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations
https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations
https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
https://blog.sonatype.com/pypi-and-npm-flooded-with-over-5000-dependency-confusion-copycats
https://blog.sonatype.com/pypi-and-npm-flooded-with-over-5000-dependency-confusion-copycats

the name of a package in use by a company, I

could go publish a malicious package using the

exact same name with a new version number

and know that it’s very likely that it would be

ingested over the intended, internally developed

package," said Sonatype CTO Brian Fox in 2017.

Public repositories that do not strictly enforce

namespace rules, including npm, PyPI, RubyGems,

and NuGet, are susceptible to namespace confu-

sion. In contrast, the Maven Central and Golang’s

pkg.go.dev repositories enforce strict namespacing

and verify namespace ownership before artifacts

can be published.

Codecov — April 2021
The Codecov supply chain attack publicized in April

2021 was similar to the SolarWinds attack. In this

case, bad actors compromised a Codecov server

to inject their malicious code into a Bash Uploader

script that was then downloaded by Codecov’s

customers over the course of two months.

Using the Bash uploader script used by Codecov

customers, the attackers exfiltrated sensitive

information including keys, tokens, and credentials

from those customers' Continuous Integration/

Continuous Delivery (CI/CD) environments. Using

these harvested credentials, Codecov attackers

reportedly breached hundreds of customer

networks, including HashiCorp, Twilio, Rapid7,

Monday.com, and e-commerce giant Mercari.

Although much focus has been on the compro-

mised Bash Uploader script, the credentials used

to modify the script were originally obtained by

the attackers from a flawed Docker image creation

process, according to Codecov. In aggregate, the

incident highlighted the importance of securing

CI/CD pipelines, including scrutinizing the secrets

filed in these environments, and stepping up

container security.

Microsoft’s Winget — May 2021
In May 2021, Microsoft released the first stable ver-

sion of its Windows 10 package manager, Winget,

which enabled users to manage apps via the

command-line. Users were able to propose or add

new packages to Winget on the project’s GitHub

repository. But, over the weekend after its launch,

many flooded Winget's software registry with pull

requests for apps that were either duplicates or

malformed. Moreover, some newly added duplicate

packages were corrupted (incomplete) and ended

up overwriting the existing packages. Over 60 such

instances were seen. The incident raised serious

concerns among developers about the integrity of

the Winget ecosystem.

Kaseya — July 2021
In July 2021, the world witnessed another form

of upstream software supply-chain attack. In this

case, the REvil ransomware group aka Sodinokibi

discovered and exploited a zero-day vulnerability

in Kaseya’s Virtual System Administrator (VSA). The

VSA tool is a remote monitoring and management

software platform used by dozens of managed

security service providers who in turn service

thousands of downstream customers.

It didn’t take long for the threat actors to follow

up with a $70 million ransom demand to decrypt

files for more than 1,500 victims. “This episode

represents yet another incident in a long trend

observed over many years: in order to scale

exploitation of downstream victims, bad actors

are increasingly targeting technology assets and

providers that live upstream within the digital value

stream. This includes open source libraries, IDEs,

build servers, update servers, and, most recently

in the case of Kaseya, Managed Service Providers

(MSPs),” Sonatype’s Matt Howard said in a blog

post following the incident.

Although there are many tools designed to protect

the perimeter of downstream technology assets,

the truth of the matter is this: software itself is

increasingly the soft underbelly of digital risk. If the

past year is any indication, we expect that attackers

will continue to target upstream software supply

chain assets as a preferred path to exploiting

downstream victims at scale.

This Kaseya incident quickly got the attention of

US law enforcement authorities, including the FBI

and the Cybersecurity and Infrastructure Security

Agency (CISA). It is a reminder for our industry and

cyber defense teams to shift security left and focus

on securing the upstream portion of the digital

supply chain with the same energy and vigor that

has long focused on the downstream portion.

142021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
O

P
E

N
 S

O
U

R
C

E
 S

U
P

P
L

Y
,

D
E

M
A

N
D

,
A

N
D

 S
E

C
U

R
IT

Y

https://dzone.com/articles/java-automodules-considered-bad-for-your-health
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months
https://www.bleepingcomputer.com/news/security/hundreds-of-networks-reportedly-hacked-in-codecov-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/hashicorp-is-the-latest-victim-of-codecov-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/twilio-discloses-impact-from-codecov-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/rapid7-source-code-credentials-accessed-in-codecov-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/codecov-hackers-gained-access-to-mondaycom-source-code/
https://www.bleepingcomputer.com/news/security/e-commerce-giant-suffers-major-data-breach-in-codecov-incident/
https://about.codecov.io/security-update/
https://github.com/microsoft/winget-pkgs
https://www.bleepingcomputer.com/news/security/windows-10s-package-manager-flooded-with-duplicate-malformed-apps/
https://github.com/microsoft/winget-pkgs/issues/14621
https://www.bleepingcomputer.com/news/security/kaseya-was-fixing-zero-day-just-as-revil-ransomware-sprung-their-attack/
https://www.bleepingcomputer.com/news/security/revil-ransomware-asks-70-million-to-decrypt-all-kaseya-attack-victims/
https://blog.sonatype.com/kaseya-ransomware-supply-chain
https://blog.sonatype.com/kaseya-ransomware-supply-chain
https://www.bleepingcomputer.com/news/security/cisa-fbi-share-guidance-for-victims-of-kaseya-ransomware-attack/
https://www.bleepingcomputer.com/news/security/cisa-fbi-share-guidance-for-victims-of-kaseya-ransomware-attack/
https://www.bleepingcomputer.com/news/security/cisa-fbi-share-guidance-for-victims-of-kaseya-ransomware-attack/

CHAPTER 2

Understanding Exemplary
and Non-Exemplary

Open Source Projects

Given its prominence in modern software devel-

opment, the quality of open source libraries used

from third-party suppliers has a fundamental impact

on digital innovation. But how should engineering

leaders go about choosing the best open source

projects? Which ones are optimal? Which ones are

suboptimal? Further, how should engineering teams

think about project hygiene, not only as it pertains

to direct dependencies, but also transitive?

In this chapter we describe open source project

quality metrics collected from the Maven Central

ecosystem and compare them with recent quality

metrics proposed by the Open Source Security

Foundation (OpenSSF) and Libraries.io.

Our analysis reveals that MTTU, a measure of a

project’s dependency update velocity, is strongly

associated with improved project security. We

did not find OpenSSF Criticality or Libraries.

io Sourcerank to be associated with improved

project security.

Thus, in order to minimize risk associated with

vulnerabilities in third-party open source libraries,

we recommend that software development teams

adopt defined criteria for selecting open source

projects. Further, we recommend that teams

select projects that have low MTTU.

Open Source Project Quality Metrics
Sonatype Mean Time to Update (MTTU)
MTTU is the average time required for a project

to respond to new versions of its dependencies.

Figure 2.1 shows how MTTU is calculated. Suppose

we have a component A with dependencies B

and C, both at version 1.2. Suppose B and C each

release a new version (1.3) and some time later

A releases a new version that bumps the version

of B and C to 1.3. The time between the release

of B version 1.3 and the release of A version 1.3

is the Time To Upgrade (TTU) for A’s migration to

B version 1.3 (and similarly for A’s adoption of C

version 1.3). The average of all these upgrade times

is then the MTTU.

MTTU provides visibility into an open source proj-

ects’ dependency management practices — Lower

is better. Projects that consistently react quickly to

dependency upgrades in their downstream depen-

dency chain will have low MTTU. Projects that either

consistently react slowly or have high variance in

their reaction time will have higher MTTU.

Figure 2.2 shows which percentage of components

achieve various MTTU performance based on

update data from 2020. Note that while the percent-

ages climb quickly (26% upgrade within 20 days,

44% within 40, and 57% within 60), there is a long

tail of slow-to-upgrade components, with 9% of

components taking more than 180 days to upgrade.

FIGURE 2.1

CALCULATING MTTU

FIGURE 2.2

MTTU PERFORMANCE, 2020

162021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
U

N
D

E
R

S
T

A
N

D
IN

G
 E

X
E

M
P

L
A

R
Y

 A
N

D
 N

O
N

-E
X

E
M

P
L

A
R

Y
 O

P
E

N
 S

O
U

R
C

E
 P

R
O

J
E

C
T

S

This slow update behavior has an even stronger

impact as dependency chains grow. If a transitive

dependency N levels deep releases an important

security update, and each component on the

dependency path takes D days to upgrade, then

the top level application doesn’t benefit from this

fix for N × D days. Thus, even a chain of exemplary

components that each upgrade within 20 days

would result in a lag time of 100 days for a depen-

dency five levels deep.

MTTU provides a measure of project quality that

is based on how quickly the project moves to

update dependencies. By this measure, quality

has been increasing over the years.In Figure 2.3,

we provide a graph of the distribution of project

MTTU values by year for every year since 2011.

We can see that in addition to the number of

 projects growing over the years, there has been a

clear trend toward faster MTTUs as shown below.

6 Since 2021 has not yet ended, it is possible this number will change.

7 2019 State of the Software Supply Chain

 ⊲ 2011 average MTTU = 371 days

 ⊲ 2014 average MTTU = 302 days

 ⊲ 2018 average MTTU = 158 days

 ⊲ 2021 average MTTU (as of Aug 1) = 28 days6

MTTU AND SECURITY

While MTTU does not directly measure respon-

siveness to security issues, our analysis in previous

years has found that MTTU is correlated with

mean time to remediate (MTTR), which is the time

required to update dependencies that have pub-

lished vulnerabilities, as shown in Figure 2.4. MTTR

is defined just like MTTU, except that we take the

average of those dependencies that were known to

be vulnerable at the time of the update.

In our previous research7, we found a significant

correlation between MTTR and MTTU (Pearson

correlation was 0.6 with N = 17,017). MTTR is gener-

ally only available for more popular and thus more

scrutinized projects. Many projects fall below the

level of usage required for security researchers to

FIGURE 2.3

MTTU DISTRIBUTION BY YEAR
Projects on Maven Central 2011 – 2021

FIGURE 2.4

CALCULATING MTTR

172021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
U

N
D

E
R

S
T

A
N

D
IN

G
 E

X
E

M
P

L
A

R
Y

 A
N

D
 N

O
N

-E
X

E
M

P
L

A
R

Y
 O

P
E

N
 S

O
U

R
C

E
 P

R
O

J
E

C
T

S

https://www.sonatype.com/resources/white-paper-state-of-software-supply-chain-report-2019

perform vulnerability research and discover latent

issues in the codebase. MTTU on the other hand

is available for all projects, providing a common

source of data for evaluating project quality. Thus,

we consider MTTU to be the best metric available

to determine the impact a component will have

on the security of projects that incorporate it.

Later in this chapter, we perform additional novel

research to further confirm the value of MTTU.

Libraries.io Sourcerank
This metric aims to measure the quality of software,

mostly focusing on project documentation, maturity,

and community. It is computed by evaluating a

number of yes / no responses to questions such

as “Is the project more than six months old?” and

a set of numerical questions, such as “How many

‘stars’ does the project have?” These are distilled

into a single score, with yes / no questions adding

or subtracting a fixed number of “points." Numerical

values are then converted into points using a for-

mula, e.g. “log(num_stars)/2." The current maximum

number of points is approximately 30.

OpenSSF Criticality Score
OpenSSF has a set of analyses that combine into

a metric called “criticality." Criticality measures a

project's community, usage, and activity. This is dis-

tilled into a score that is intended to measure how

crucial the project is in the open source ecosystem.

OpenSSF Scorecard
OpenSSF also has a more extensive evaluation of

project quality called the “Scorecard” project. This

project provides support for automatically monitoring

development practices, tooling use, and other project

quality and maturity attributes, then reporting which

checks succeed and which fail. OpenSSF does not

provide a mechanism for distilling this “Scorecard”

into a single metric and so we did not include it in the

quantitative analysis we describe below.

Quality Metric Comparison
Figure 2.5 summarizes the four proposed project

quality frameworks by showing to what extent they

incorporate information about five dimensions of

quality: maturity, popularity, activity, dependency

management, and development practices.

Popularity
Libraries.IO includes project popularity metrics

(stars, subscribers, and usage) as part of their

Sourcerank metric. OpenSSF’s criticality metric

includes usage (the number of projects that use

the library) but not stars or subscribers. OpenSSF’s

Scorecard system and MTTU do not include any

factors that are related to popularity.

Activity
All four quality frameworks include some aspect of

activity analysis. Sonatype’s MTTU metric is lightly

correlated with activity because fast MTTU requires

frequent releases. Libraries.IO Sourcerank tracks

whether a project has been updated in the last

six months, another weak correlation with activity.

OpenSSF’s Scorecard metric includes a check

(whether there has been a commit in the last 90

days) that is also weakly correlated with activity.

The OpenSSF Criticality metric includes a robust

set of activity measures such as commit frequency

and release count.

Dependencies
Sonatype’s MTTU provides the most robust measure

of dependency update practices, as it measures how

quickly a project updates its dependencies once

new versions are released. Libraries.IO Sourcerank

checks whether there were outdated dependencies

at the time of scoring. OpenSSF Scorecard checks

if automated dependency update tools are used.

OpenSSF Criticality does not consider dependency

management practices.

Dev Practices
The OpenSSF Scorecard is the only measure that

considers development practices such as whether

a code review is performed, and whether contin-

uous integration and Static Analysis and Security

Testing (SAST) tooling is used.

Maturity
Libraries.IO and OpenSSF metrics include measures

of maturity. Libraries.IO Sourcerank includes

semantic versioning checks and a number of doc-

umentation checks. OpenSSF Scorecard includes

FIGURE 2.5

OPEN SOURCE QUALITY METRIC COMPARISON

182021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
U

N
D

E
R

S
T

A
N

D
IN

G
 E

X
E

M
P

L
A

R
Y

 A
N

D
 N

O
N

-E
X

E
M

P
L

A
R

Y
 O

P
E

N
 S

O
U

R
C

E
 P

R
O

J
E

C
T

S

https://github.com/ossf/criticality_score
https://github.com/ossf/scorecard

FIGURE 2.6

METRICS USED TO ASSESS RELATIVE QUALITY OF AN OSS PROJECT

SONATYPE MTTU
Faster Updates

OPENSSF CRITICALITY
Higher Score

LIBRARIES.IO

SOURCERANK
Higher Score

POPULARITY
More Popular

Vulnerable 1.8x less likely – 2.9x more likely 2.8x more likely

No Path Forward ∞ (no NPF in top 25%) 6x less likely – 3x more likely

Breaking Changes 3.2x less likely 8x less likely 3.3x less likely 12x less likely

XX component is less likely to contain defects XX component is more likely to contain defects

similar versioning and documentation checks, as well

as checks regarding how the project is packaged

and distributed. The OpenSSF Criticality metric

includes checks that consider how quickly issues are

resolved, responsiveness of contributors, and when

the project was originally created.

As Figure 2.5 shows, no single metric provides

robust coverage across all five attributes. However,

by combining metrics, we can determine which

projects score highly across popularity, activity,

dependencies, dev practices, and maturity metrics.

In the following section, we evaluate the individual

metrics, as well as these combined metrics to

determine which signals are most important in

identifying high-quality projects that enable faster

innovation with less risk.

Research Findings
When using open source components, there are a

number of outcomes that developers would rather

avoid. Components can contain vulnerabilities,

which their applications then inherit. Worse,

components can be vulnerable without having an

available remediation path (e.g. “no path forward,”

described later in this chapter), requiring significant

effort to refactor or deprecate the component.

Component upgrades can also break application

builds, requiring even more development work.

To determine which components exhibit higher and

lower quality traits, we analyzed 100,000 applica-

tions. We looked at the individual quality metrics

to identify which measures are most useful when

choosing components.

All told, we obtained a collection of 39,164 open

source components that were used across these

100,000 applications. We were able to obtain MTTU

data for 52% of components, Sourcerank scores for

91% of components, and Criticality scores for 40%

of these components.

The data set contained 233,569 component

versions. For each version, we evaluated whether it

was subject to any of the following conditions:

 ⊲ Vulnerable: A component is vulnerable if it or

any of its transitive dependencies contain a

known security issue. Overall, 5,175 vulnerable

component versions were found.

 ⊲ No Path Forward: A component has no path

forward (NPF) if the latest version of that

component is vulnerable. This means the

vulnerability cannot be remediated by upgrading

the component. For direct dependencies,

this occurs if a project is slow to remediate

security issues in its codebase. For transitive

dependencies, this occurs when a project is

slow to update its own vulnerable dependencies

(or these dependencies are slow to fix issues

and update their dependencies, etc.). Overall,

788 component versions had no path forward

at the time they were found to be vulnerable.

 ⊲ Breaking Changes: A component has breaking

changes if an update to that component changes

public APIs in a manner that would cause either

builds to break or runtime errors. Overall, 1,116

component versions had breaking changes,

affecting 349 projects.

Exemplars
We consider exemplary projects to be those that

are in the top 25% according to the metrics of

interest. We then check to see whether exemplary

projects are less likely to have the undesirable

outcomes described above when compared to

the bottom 25% of the population. In other words:

if you select a top-rated project as compared to a

bottom-rated project, what difference in outcomes

would you expect? We also include a comparison

with a selection method based purely on popularity,

as measured by the number of times a component

occurs in application scans.

Figure 2.6 summarizes, for each type of exemplar,

and each outcome type, whether we found a

statistically significant difference in the likelihood

of negative outcomes, and the factor difference

observed. Bolded entries are statistically significant

at a level of p < 0.005, while non-bolded entries

have p < 0.05. That is: our confidence that we’re

seeing a true effect is higher for the bolded entries.

192021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
U

N
D

E
R

S
T

A
N

D
IN

G
 E

X
E

M
P

L
A

R
Y

 A
N

D
 N

O
N

-E
X

E
M

P
L

A
R

Y
 O

P
E

N
 S

O
U

R
C

E
 P

R
O

J
E

C
T

S

We color entries red when the effect is in the

negative direction, for example if a high-quality

component is more likely to contain a vulnerability.

In summary, Sonatype MTTU is the best metric

for identifying open source projects that are less

likely to contain vulnerabilities. Popularity and

Sourcerank (which includes popularity measures)

are poor metrics to consider if the goal is strictly to

avoid vulnerable versions, as more popular projects

tend to have more reported vulnerabilities, as

discussed in Chapter 1.

SECURITY

As in previous studies, we see a strong correlation

between better update hygiene, as measured by

MTTU, and security, as measured by lower rates of

“vulnerabilities” and “No Path Forward” conditions.

Components with faster MTTU were 1.8 times less

likely to have vulnerabilities when compared to the

bottom 25% and much less likely to be stuck in a

vulnerable state due to having no path forward.

MTTU AND TRANSITIVE DEPENDENCIES

Upgrade responsiveness is particularly important

when it comes to resolving security issues with

transitive dependencies. When incorporating

open source components into an application, that

program inherits not only the direct code quality

and security practices of the component, but also

its approach to dependency management.

New versions of dependencies typically bring

bug fixes, security patches, new functionality, and

performance improvements. Ideally, each library in

the dependency tree for a component would swiftly

upgrade their direct dependencies, thus ensuring

that these new versions make their way swiftly

throughout the dependency tree. MTTU measures

exactly the extent to which this happens.

POPULARITY

In previous reports, we showed that Maven Central

download popularity was a poor predictor of

dependency management quality. This year, we

examined popularity as measured by the number

of times a component occurs in application scans.

We again found the same results: popularity is not

a good predictor of security. In fact, in this year’s

result, popularity was misleading, with more pop-

ular projects more likely to contain vulnerabilities

and be stuck in no path forward states. Libraries.IO

Sourcerank had a similar association with vulnera-

bility, which is not surprising as Sourcerank includes

multiple attributes focused on project popularity.

Guidance for Open Source Project
Owners and Contributors
While there are plenty of projects that obtain good

outcomes without following all the practices con-

sidered by the project quality metrics we discussed

here, there is strong evidence that these practices

lead directly to improved security and quality

outcomes. We therefore recommend that project

maintainers strive to adopt the best practices

measured by Sonatype’s MTTU and OpenSSF’s

Criticality metrics.

While the factors in the OpenSSF Scorecard may

also improve project quality, we were not able to

empirically evaluate this possibility because the

OpenSSF Scorecard does not provide an associ-

ated quantitative metric.

Guidance for Enterprise
Development Teams
Choosing high-quality open source projects is an

important strategic decision for enterprise soft-

ware development organizations. Components

exhibit a wide variety of outcomes in terms of

release velocity, security remediation behavior,

and likelihood of breaking changes. Chapter 3

of this paper details the impact this can have on

development efficiency of projects using these

components. Therefore, we recommend choosing

components with low MTTU values and high

Criticality scores.

While Libraries.IO Sourcerank wasn’t associated

with higher performance in the outcomes we

considered, it may well promote other desirable

effects and does contain sensible practices. There

is little reason not to prefer applications with higher

Libraries.IO Sourcerank if they have high Criticality

scores and low MTTU.

Just as traditional manufacturing supply chains

intentionally select parts from approved suppliers

and rely upon formalized procurement practices

— enterprise development teams should adopt

similar criteria for their selection of open source

components. This practice ensures the highest

quality parts are selected from the best and fewest

suppliers — a practice W. Edwards Deming recom-

mended for decades to manufacturers of physical

goods. Implementing selection criteria and update

practices will not only improve code quality, but

can accelerate mean time to repair when suppliers

discover new defects or vulnerabilities.

202021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
U

N
D

E
R

S
T

A
N

D
IN

G
 E

X
E

M
P

L
A

R
Y

 A
N

D
 N

O
N

-E
X

E
M

P
L

A
R

Y
 O

P
E

N
 S

O
U

R
C

E
 P

R
O

J
E

C
T

S

CHAPTER 3

Peer Practices Associated
With Micro and Macro

Dependency Management

In today’s world, a wide variety of bits are flowing

rapidly through our software supply chains.

Because of this, an equally wide variety of decisions

must be made by engineering team members

across every phase of the DevSecOps value

stream. What you will see in the following research

is that software developers make suboptimal

choices 69% of the time with respect to updating

third-party dependencies.

In particular, there are two types of decisions that

have become increasingly critical to maintaining

healthy software supply chains:

1. Micro dependency decisions: frequent tactical

decisions that developers must make on a daily

basis to determine whether or not to update

existing dependencies when newer versions

become available.

2. Macro architectural decisions: strategic decisions

that software architects and engineering leaders

must make when deciding which open source

projects are optimal for their products and why.

8 2019 State of the Software Supply Chain

But how should these decisions be made at scale?

 ⊲ Should companies expect software developers to

intuitively know the right action to take?

 ⊲ What are the benefits of making good decisions?

 ⊲ What are the costs of making bad decisions?

 ⊲ Do engineering leaders have a responsibility to

equip developers with information designed to

automate better decision making?

These are a few of the questions that we attempt to

answer in Chapter 3.

To Update or Not: An Empirical View
of Micro Dependency Management
There are three reasons why dependency manage-

ment is rapidly becoming an increasingly important

practice for software engineering teams:

1. The enormous volume of open source depen-

dencies present in production applications.

2. The incredible velocity at which new versions of

dependencies are being released.

3. The fact that open source dependencies age like

milk, and not like wine.

The average modern application contains 128 open

source dependencies, and the average open source

project releases 10 times per year8. This reality, com-

bined with the fact that a few hyper-active projects

release more than 8,000 times per year, creates a

situation in which developers must constantly decide

FIGURE 3.1

MACRO ARCHITECTURAL VS. MICRO DEPENDENCY DECISIONS

Software
developers make
suboptimal choices
69% of the time
with respect to
updating third-party
dependencies.

222021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

https://www.sonatype.com/resources/white-paper-state-of-software-supply-chain-report-2019

when (and when not to) update third-party

dependencies inside of their applications.

But, ask most developers about dependency

management, and they’ll tell you the same

thing: keeping open source libraries fresh and

optimally up to date is a good idea that requires

terribly mundane work. In other words, in the

eyes of most software engineers, dependency

management is seen as a thankless maintenance

task that’s easy to get wrong, hard to get right,

and generally detracts from time spent innovating.

Developers know that it’s important, but they

frequently don’t have the time or patience to

make it a priority and lack the tooling to do it

optimally. It’s no wonder that many developers

describe this situation as “dependency hell.”

The result is that dependencies in applications can

easily grow old and stale (vulnerable) despite the

possibility that newer and fresher (more secure)

versions are readily available.

In light of these circumstances, Sonatype

researchers set out to answer the question:

are developers making efficient dependency

management decisions?

9 100,000 anonymized, validated applications scanned by publicly available and commercial vulnerability analysis tools.

To understand the relative quality of current depen-

dency management decisions, Sonatype research-

ers spent the past year studying 100,000 Java

applications9 and analyzing more than four million

component migrations (upgrades from version n to

any number of potential newer versions).

In support of our research, we developed a scoring

algorithm (Figure 3.3) designed to measure the

relative quality of component migration decisions.

The “component choice” algorithm is derived

from eight common-sense rules distilled from the

insights in the previous chapter.

Research results:

1. 10% of the projects in the Maven Central ecosys-

tem are being used in production apps — and

only 25% of those are actively being updated,

which itself is a massive and complex effort.

2. Upgrade decisions are highly variable and fre-

quently suboptimal, yet herd behavior doesn’t lie.

3. Newer versions are generally better, but not

always best.

FIGURE 3.2

DATA ANALYZED

FIGURE 3.3

8 RULES FOR UPGRADING TO THE OPTIMAL VERSION

232021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

FINDING #1 :
Dependency management is a
massive effort practiced on only
25% of libraries in production apps.
With 430,000 projects to choose from in Maven

Central, it’s remarkable that 100,000 Enterprise

Java applications are leveraging only 40,000 (10%)

of available projects. Furthermore, of the 40,000

projects being leveraged, only 10,000 (25%) are

actively being managed and updated by the down-

stream software developers using these projects

(Figure 3.4). Notwithstanding, it is staggering to see

these 10,000 projects were updated more than

4 million times across 105,170 versions, with an

estimated effort of one hour per update.

Needless to say, when it comes to dependency man-

agement, the level of developer effort and scale of

developer decision making is massive, even though

it only pertains to 25% of utilized dependencies.

Our analysis of 100,000 applications revealed that

75% of components in use were not upgraded in

the last year. Why is that? Is it because engineers

are indifferent? Is it because they are afraid of

breaking builds? Or, is it simply because developers

lack structured guidance at their fingertips?

Regardless of the reason, a majority of depen-

dencies are simply not being updated in a regular

manner. This is a missed opportunity for engineer-

ing teams to improve quality, minimize risk, reduce

unplanned work, and save money by proactively

managing 100% of their dependencies.

FINDING #2:

Upgrades are variable
and suboptimal, and herd
behavior doesn't lie.

Upgrades are variable and suboptimal.
Our research revealed that organizations perform

an average of 6,200 component migrations per

year, and that 69% of the target migration choices

made were suboptimal because they failed to

identify the best version to upgrade to.

Migration decisions were divided into five groups,

as outlined in Figure 3.5.

Whenever a developer updates a dependency,

they have on average 21 available versions to

choose from. Without intelligent automation to

FIGURE 3.4

ACTIVE PROJECTS IN THE MAVEN

 CENTRAL REPOSITORY

FIGURE 3.5

5 GROUPS OF MIGRATION DECISIONS

242021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

support them, and with so many versions to choose

from, it is inevitable that developers will guess

incorrectly which version is best.

Understanding “imperfect choices”.
To understand the definition of an imperfect

upgrade choice, consider the following scenario:

Component foo was upgraded four times over the

course of a year. At the time of each upgrade, the

developer should reasonably consider all available

versions and take into account multiple dimensions

of data including: security, quality, popularity, and

licensing, as set out in Chapter 2.

In Figure 3.6, upgrades 1 and 2 occurred when the

optimal version was 1.9 according to the “compo-

nent choice” rules, as described on page 23.

Upgrades 3 and 4 occurred after a new component

version became available which made 1.11 the new

optimal version.

In the aggregate, upgrades 1 and 3 were subopti-

mal, resulting in unnecessary upgrades 2 and 4.

The cost of performing suboptimal upgrades to a

single component, for a single team, for a single

application is small. However, when considering the

fact that only 31% of upgrade decisions examined in

this study were optimal, it is easy to see how much

time and effort developers could save by consis-

tently making better upgrade decisions. Specifically,

in our sampling of 100,000 applications and four

million update decisions, we discovered that 69% of

such decisions were suboptimal.

Equipped with intelligent automation, a medium

sized enterprise with 20 application development

teams would save a total of 160 developer days

(1,280 hours) and $192,000 per year at a fully

loaded cost of $150 per hour. This would give each

development team almost two weeks of extra

productivity time — each year.

FIGURE 3.6

UNDERSTANDING IMPERFECT

UPGRADE CHOICE

FIGURE 3.7

TIME SAVED WITH INTELLIGENT AUTOMATION

252021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

FIGURE 3.8

HERD MIGRATION BEHAVIOR OF ORG.SPRINGFRAMEWORK:SPRING-CORE
August 9, 2020–August 1, 2021

262021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

Herd behavior doesn’t lie.
By examining 100,000 applications and four million

migration decisions made by the developer herd, it

is easy to visualize patterns and practices associ-

ated with both efficient and inefficient dependency

management behaviors.

On the previous page, Figure 3.8 provides a visual

summary of herd migration behavior over the past

year associated with spring-core, a single compo-

nent within the highly popular spring-framework.

The y-axis shows the past 52 weeks of upgrade

activity, with the top row representing herd migra-

tion decisions made one year ago, and the bottom

row representing herd migration decisions made

during the most recent week. The x-axis represents

the 150 most recent versions with older versions to

the left, and newer versions to the right.

FINDING #3:

New versions are not
necessarily better.
In an attempt to help automate dependency

management decision making, some package

managers provide for an open-ended version

range that pulls the latest version as soon as it

becomes available. In the spirit of keeping things

fresh, many tools myopically submit pull requests

for every new release. While such updates happen

automatically, they can also have unintended

consequences like the introduction of unplanned

work and unnecessary security risk – e.g. malware

injection and namespace confusion (Dependabot,

Renabot, etc.). This type of naive dependency

update strategy can lead to frustration and distrac-

tion for project maintainers, as described by Dan

Abranov’s recent blog.

To contextually automate dependency manage-

ment, more intelligent tools are emerging that

minimize both upgrade risk and upgrade events,

thereby maximizing overall efficiency. Using the

upgrade rules defined in Figure 3.3, we find there

is a correlation between optimal choice and the

latest version. Score 9 is assigned to the optimal

FIGURE 3.9

MIGRATION DECISIONS MADE BY PROACTIVE TEAMS
org.springframework:spring-core,

August 9, 2020–August 1, 2021

272021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

https://overreacted.io/npm-audit-broken-by-design/
https://overreacted.io/npm-audit-broken-by-design/

choice. On average, the most optimal target is 2.7

versions from the LATEST version, demonstrating

that the most recent release is not the best

choice, and highlighting why simplistic update

policies are insufficient.

FINDING #4:

Three distinct patterns of
dependency management behavior.
Our analysis reveals that development teams

exhibit three distinct patterns of dependency

management behavior:

Teams Living in Disarray
 Developers working on these teams lack auto-

mated guidance. They update dependencies

infrequently. When they do update, they utilize gut

instincts and commonly make suboptimal deci-

sions. This approach to dependency management

is highly reactive, wasteful, not scalable, and leads

to stale software with elevated technical debt and

increased security risk.

Teams Living on the Edge
Developers working on these teams benefit

from simplistic but non-contextual automation.

Dependencies are automatically updated to the lat-

est version, whether optimal or not. Such automation

helps to keep software fresh, but it can inadvertently

lead to increased security risks and higher costs

associated with unnecessary updates and broken

builds. This approach is proactive and scalable, but

not optimal in terms of expense or outcomes.

Teams Living Close to the Edge
Developers working on these teams have the

advantage of intelligent and contextual automa-

tion. Dependencies are automatically recom-

mended for updating, but only when optimal. This

FIGURE 3.11

STRATEGIES FOR DEPENDENCY MANAGEMENT

FIGURE 3.10

DEFINING X FOR LIVING CLOSE TO THE EDGE

282021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

type of intelligent automation keeps software fresh

without inadvertently introducing wasted effort or

increased security risk. This approach is proactive,

scalable, and optimal in terms of cost efficiency

and quality outcomes.

Selecting the Best Projects:
Reflections on Macro
Architectural Decisions
When developing applications in the context of

a modern software supply chain, it is critical that

engineering leaders define clear policies. These

help their developers make sound architectural

decisions as to which open source projects are

acceptable (optimal exemplars), and which ones

are unacceptable (suboptimal non-exemplars).

Establishing and enforcing intelligent architectural

policy is important for several reasons:

1. Save time and money by standardizing which

projects are best for you, and eliminating

inconsistent diligence efforts associated with

component selection.

2. Improve application security and quality by

standardizing on projects that are most likely

to provide reliable access to new versions of

non-vulnerable dependencies. This aids with

micro dependency decisions and helps with

never getting stuck with “no path forward” traps.

3. Reduce technology bloat associated with

non-standard decision making.

If developers made dependency update decisions

based on a structured system of guidance, we

would expect to see a correlation between optimal

update decisions and exemplary projects, as well

as suboptimal update decisions and non-exemplary

projects. The fact that these correlations DO NOT

EXIST, reveals a clear opportunity for engineering

leaders to benefit by standardizing open source

architectural guidance at scale.

Conclusions and Practical
Recommendations

 ⊲ Based on the research, it’s clear that material

inefficiencies exist along with significant

avoidable risk. Software engineering teams

have considerable room for improvement with

respect to dependency management practices.

 ⊲ To improve efficiencies, save money, and

optimize dependency management at scale,

engineering leaders should embrace intelligent

automation. Chosen tools should remove the

current error-prone micro decision making

from day-to-day developer workflows.

 ⊲ Engineering leaders should also embrace

tools to guide macro decisions made by

architects and developers with respect

to initial technology selection.

292021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
P

E
E

R
 P

R
A

C
T

IC
E

S
 A

S
S

O
C

IA
T

E
D

 W
IT

H
 M

IC
R

O
 A

N
D

 M
A

C
R

O
 D

E
P

E
N

D
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

CHAPTER 4

 Software Supply Chain Maturity

Less Mature More Mature

UNMANAGED

This first stage is referred to as the
Unmanaged stage because organi-
zations are often operating with an
"anything goes" mindset, are often
reactive, and have minimal process/
oversight related to the themes.

EXPLORATION

A realization of some sort is usually the
impetus for thrusting an organization
into the Exploration stage. This is often
triggered by an "event" that causes an
"all hands on deck" reaction to uncover
necessary information/solutions, or
a champion of some sort leading an
improvement effort. This stage is often
focused on identifying the perceived
problem/inefficiency, learning about
current implementations, and starting
to explore potential solutions.

AD HOC

In the midst of starting to define
processes and implement tooling
to improve the identified problem,
Ad Hoc solutions reign as the teams
work toward institutionalization
and socialization of new tooling
and processes.

CONTROL

In the Control stage, ad hoc solutions
give way to more formalized
governance processes across
the enterprise. Socialization and insti-
tutionalization of these processes
and tools is ongoing, but for the most
part, stakeholders are bought in to
the need for improvement measures
and are working towards compliance.

MONITOR & MEASURE

The Monitor and Measure stage
occurs once new processes and
tools have been institutionalized,
and organizations have reached a
phase of being able to proactively
address OSS component risk. In
addition, a healthy amount of ROI
is realized, and measurements to
demonstrate success are available.

For this year’s report, we surveyed 702 engi-

neering professionals about their software

supply chain management practices, including

approaches and philosophies to utilizing open

source components, organizational design,

governance, approval processes, and tooling. The

survey also inquired about engineering outcomes

including deployment frequency, security, engi-

neering productivity, and job satisfaction. The

responses came from IT professionals represent-

ing a variety of roles and industries.

The objective of the survey was twofold:

1. Determine if certain software supply

chain practices correlate to successful

engineering outcomes.

2. Develop a benchmark and maturity model

so organizations can evaluate themselves in

comparison to their peers.

The survey itself consisted of 41 questions:

 ⊲ Ten questions were focused on understanding

the relative quality of software outcomes

(dependent variables).

 ⊲ 24 questions were focused on understanding

patterns and practices embraced by engineering

teams (independent variables).

 ⊲ Seven questions were focused on understanding

job satisfaction.

Responses to all 41 questions were assessed

against the following eight elements of software

supply chain management practices:

1. Application inventory (Inventory) – Do you know

all the applications your organization has in

development/production, and who the stake-

holders/owners are? Do you know the details

about them, including how they are built, and

the Software Bill of Materials (SBOM) for the OSS

components they include?

2. Supplier hygiene (Suppliers) – Do you know

if your OSS components come from a trusted,

quality supplier?

3. Build & release – Do you understand how your

software "parts" and processes come together to

build and release applications into production?

4. Project consumption (Consumption) – Do you

govern OSS component selection?

5. Giving back (Contribution) – Do you contribute

to the OSS community?

6. Policy control (Risk Management) – What is

your tolerance for risk? Do you have automated

policy enforcement?

7. Digital transformation (Execution Plan) – What

plans, resources, and training do you have to

help institutionalize new processes and tools?

FIGURE 4.1

FIVE STAGES OF SOFTWARE SUPPLY CHAIN MANAGEMENT MATURITY

C
H

A
P

T
E

R
 4

:
S

O
F

T
W

A
R

E
 S

U
P

P
LY

 C
H

A
IN

 M
A

T
U

R
IT

Y

312021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

8. Remediation – How do you implement fixes to

address identified OSS component risk?

Aggregate responses were then scored and

mapped into five different stages of software supply

chain management maturity, as defined

in Figure 4.1.

How Mature are Today’s
Software Supply Chains?
Based on the survey results, it’s a bit of a mixed

bag. Let us explain.

In Figure 4.2, we’ve plotted the 702 responses

against the five different stages of maturity. We

see that, across the various themes, the majority of

respondents were graded less than the “Control”

level of maturity. Further, based on the definitions

above, we can assert that the “Control” level of

maturity is the point at which an organization

transitions from “figuring it out” to a minimal level of

maturity that will enable high-quality outcomes. The

three levels of maturity (Unmanaged, Exploration,

Ad Hoc) prior to the “Control” level of maturity are

suboptimal; this is where most of survey responses

were scored.

Reality vs. Perception on Software
Supply Chain Maturity
The majority of respondents demonstrate an “Ad

Hoc” approach to software supply chain manage-

ment for all themes except two: Remediation and

Inventory. Respondents indicate they are remediat-

ing risky components and they understand where

the risk resides. This is true even though they have

an “Ad Hoc” approach to Build & Release and Risk

Management processes.

We also compared the objective analysis done in

chapters 2 and 3, which analyzed 100,000 applica-

tions, to the subjective survey responses. The data

shows a clear disconnect between what is actually

happening, and what people think is happening:

70% of remediations are suboptimal, which aligns

with the “Ad Hoc” maturity rating for both Risk

Management and Execution practices.

In summary, the survey suggests that respondents

have talked themselves into believing that they’re

doing a good job, leading at the least to a false

sense of security and at worst to huge inefficiencies

in the engineering process. Objectively, however, the

data from Chapters 2 and 3 indicates that develop-

ment teams are not following structured guidance,

and do not have intelligent tooling to ensure quality

outcomes. Reconciling this perception with reality

will help organizations in achieving the promised

efficiency gains in dependency management.

FIGURE 4.2

SOFTWARE SUPPLY CHAIN

MATURITY SCORE BY THEME
 5th, 50th, and 95th Percentile

C
H

A
P

T
E

R
 4

:
S

O
F

T
W

A
R

E
 S

U
P

P
LY

 C
H

A
IN

 M
A

T
U

R
IT

Y

The survey suggests that
respondents have talked
themselves into believing
that they’re doing a good
job, leading at the least to
a false sense of security
and at worst to huge
inefficiencies in the
engineering process.

322021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

CHAPTER 5

Emergence of Software Supply
Chain Regulation and Standards

What’s Happening in
the United States?
Following the multitude of attacks in 2020 aimed at

software supply chains, the United States Federal

Government took notice and began to take action.

February
Starting in February 2021 — President Biden

issued an Executive Order (EO) laying out changes

to secure all supply chains, including software. The

order called upon the Secretaries of Commerce

and Homeland Security to coordinate with heads of

appropriate agencies to report on the security and

integrity of critical information and communications

technology software supply chains.

Also in February, the CIO for the Department of

Defense (DoD CIO) rolled out a new reference

architecture called Department of Defense (DOD),

Zero Trust Reference Architecture (ZTA). Within the

ZTA the DoD CIO outlined various Zero Trust Pillars

and Capabilities including a section centered on

protecting applications and software supply chains.

The reference architecture specifically calls for

protection of Applications and Workloads, defined as:

Applications and workloads include tasks

on systems or services on-premises, as

well as applications or services running in

a cloud environment. Zero Trust workloads

span the complete application stack from

application layer to hypervisor. Securing

and properly managing the application

layer, as well as compute containers and

virtual machines is central to Zero Trust

adoption. Application delivery methods such

as proxy technologies, enable additional

protections to include Zero Trust decision

and enforcement points. Developed Source

Code and common libraries are vetted

through DevSecOps development practices

to secure applications from inception.

The document further defines software supply

chain protection as:

The ability to validate the security on a

binary, library, or source code used to build

an application.

April
In April 2021, the United States saw the formaliza-

tion of software supply chain standards begin to

take shape when the CISA and National Institute

of Standards and Technology (NIST) released

their paper “Defending Against Software Supply

Chain Attacks”

In it, the two agencies highlighted that software

compromised in supply chain attacks could have

“widespread consequences for government,

critical infrastructure, and private sector software

customers.” They also noted how these types of

attacks can easily allow bad actors to get around

other cyber defenses to carry out cyber espionage.

The document provides in-depth guidance for

both governments and companies to implement

reasonable safeguards to secure their software

supply chains.

Suggestions include:

 ⊲ Developing a written program to address

software supply chain risk.

 ⊲ Inventorying organizational reliance on

external software and code across all

operational departments.

 ⊲ Assessing risk from these vendors and adopting

appropriate contractual and other safeguards.

 ⊲ Coordinating efforts across management, IT,

personnel, compliance, product development

and operational departments.

 ⊲ Monitoring the threats and vulnerabilities to the

software supply chain, including through techni-

cal measures and threat analysis, on an ongoing

basis.

May
In May 2021, Biden signed a second Executive

Order for software supply chains, this time, as part of

a critical look at the nation’s cybersecurity posture.

The EO “on Improving the Nation’s Cybersecurity” is

a milestone for the U.S. government.

The EO prescribed a number of technologies,

including multi-factor encryption and endpoint

detection as critical to protecting the nation's cyber

assets. Further, the EO established a detailed plan

for taking steps to secure the federal software

The Executive Order
“on Improving the
Nation’s Cybersecurity”
is a milestone for the
U.S. government.

342021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
E

M
E

R
G

E
N

C
E

 O
F

 S
O

F
T

W
A

R
E

 S
U

P
P

L
Y

 C
H

A
IN

 R
E

G
U

L
A

T
IO

N
 A

N
D

 S
T

A
N

D
A

R
D

S

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v1.1(U)_Mar21.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v1.1(U)_Mar21.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

supply chain. The order called for NIST to publish

guidelines for establishing best practices to detect

vulnerabilities, and requirements that all critical

software delivered to government customers

including an SBOM. It also included milestones

that agencies must meet to demonstrate progress

toward the goals.

June
In June 2021, as directed by the EO, NIST released

their definition of “critical software” defining it as:

[...] any software that has, or has direct

software dependencies upon, one or more

components with at least one of these

attributes:

 ⊲ is designed to run with elevated privilege or

manage privileges;

 ⊲ has direct or privileged access to networking

or computing resources;

 ⊲ is designed to control access to data or

operational technology;

 ⊲ performs a function critical to trust; or,

 ⊲ operates outside of normal trust boundaries

with privileged access.

The definition applies to software of all forms (e.g.,

standalone software, software integral to specific

devices or hardware components, cloud-based

software) purchased for, or deployed in, production

systems and used for operational purposes.

July
In July 2021, NIST published guidance for outlining

security measures for critical software use and

minimum standards for vendors’ testing of their

software source code.

Also in July, the National Telecommunications

and Information Administration (NTIA) released a

minimum definition of an SBOM. This was a critical

step toward improving transparency for software

supply chains for both technology vendors and

government customers.

The NTIA describes an SBOM as “effectively a

nested inventory, a list of ingredients that make

up software components, and provides those who

produce, purchase, and operate software with infor-

mation that enhances their understanding of the

supply chain. SBOMs are a formal, machine-read-

able inventory of software components and

dependencies. SBOMs contain information

about those components, and their hierarchical

relationships. SBOMs may include open source or

proprietary software and can be widely available or

access-restricted.”

Further, NTIA defined the minimum elements for a

SBOM as three broad, interrelated areas:

1. Data Fields: Documenting baseline information

about each component that should be tracked.

2. Automation Support: Allowing for scaling across

the software ecosystem through automatic

generation and machine-readability.

3. Practices and Processes: Defining the opera-

tions of SBOM requests, generation, and use.

Furthermore in July, both the House of

Representatives and the Senate began drafting

legislation in two separate committees.

The House’s Homeland Security Committee intro-

duced seven bipartisan bills, five of which focused

strictly on strengthening cybersecurity, including

a “Pipeline Security Act,” and “Cybersecurity

Vulnerability Remediation Act.”

The Senate’s Homeland Security and Governmental

Affairs Committee introduced The Supply Chain

Security Training Act, calling it, “bipartisan legisla-

tion to help protect against cybersecurity threats and

other technological supply chain security vulner-

abilities that arise when the federal government

purchases services, equipment or products.

What’s Happening in the
United Kingdom?
In May 2021, the U.K. government announced that

it was seeking advice on defending against digital

supply chain attacks from organizations that either

consume IT services, or MSPs that provide software

and services.

“As supply chains
become interconnected,
vulnerabilities in suppliers’
products and services ...
become more attractive
targets for attackers.”
— U.K. government’s request for advice on
 defending against digital supply chain attacks

352021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
E

M
E

R
G

E
N

C
E

 O
F

 S
O

F
T

W
A

R
E

 S
U

P
P

L
Y

 C
H

A
IN

 R
E

G
U

L
A

T
IO

N
 A

N
D

 S
T

A
N

D
A

R
D

S

https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/critical-software-definition-explanatory
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/critical-software-faqs#Ref_FAQ2
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/critical-software-faqs#Ref_FAQ2
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/critical-software-faqs#Ref_FAQ3
https://www.nist.gov/news-events/news/2021/07/nist-delivers-two-key-publications-enhance-software-supply-chain-security
https://www.ntia.gov/blog/2021/ntia-releases-minimum-elements-software-bill-materials
https://www.ntia.gov/blog/2021/ntia-releases-minimum-elements-software-bill-materials
https://www.hsgac.senate.gov/media/majority-media/peters-and-johnson-introduce-bipartisan-bill-to-help-secure-federal-information-technology-supply-chains-against-threats
https://www.hsgac.senate.gov/media/majority-media/peters-and-johnson-introduce-bipartisan-bill-to-help-secure-federal-information-technology-supply-chains-against-threats
https://www.hsgac.senate.gov/media/majority-media/peters-and-johnson-introduce-bipartisan-bill-to-help-secure-federal-information-technology-supply-chains-against-threats
https://www.gov.uk/government/news/new-plans-to-boost-cyber-resilience-of-uks-critical-supply-chains
https://www.gov.uk/government/news/new-plans-to-boost-cyber-resilience-of-uks-critical-supply-chains
https://www.gov.uk/government/news/new-plans-to-boost-cyber-resilience-of-uks-critical-supply-chains

The request noted:

"As supply chains become interconnected,

vulnerabilities in suppliers' products and

services correspondingly become more

attractive targets for attackers who want

to gain access to the organisations. Recent

high-profile cyber incidents where attackers

have used MSPs as a means to attack

companies are a stark reminder that cyber

threat actors are more than capable of

exploiting vulnerabilities in supply chain

security, and seemingly small players in an

organisation's supply chain can introduce

disproportionately high levels of cyber risk."

Also in May, the Department for Digital, Culture,

Media, and Sport (DCMS) opened up a survey that

closed in early July, and invited comments from

industry experts and tech organizations on step-

ping up supply chain security across the UK.

The initiative is a part of the U.K.’s nationwide

"cyber resilience" efforts set out in its National

Cyber Security Strategy to safeguard businesses

and organizations that increasingly rely on technol-

ogy from cyber-attacks, and to strengthen overall

digital supply chain security.

While the feedback has not been released to the

public yet, the U.K. government has noted that it

will result in the re-evaluation of supply chain risks,

reviewing policies, and likely implementing new

guidelines and frameworks to strengthen specific

areas of digital supply chain security. It could also

mean the introduction of new, country-wide legisla-

tion for software firms and IT service providers.

What’s Happening in Germany?
In May 2021, Germany passed the Information

Technology Security Act 2.0 as an update to the

First Act to “increase cyber and information security

against the backdrop of increasingly frequent and

complex cyber-attacks and the continued digital-

isation of everyday life.” While this Act influences

many areas of the IT industry in Germany, it spe-

cifically states that suppliers, i.e. manufacturers of

critical components, will also be subject to certain

obligations to safeguard the entire supply chain.

Critical components are defined as IT products:

1. that are used in critical infrastructures;

2. for which disruptions to availability, integrity,

authenticity, and confidentiality may lead to a

failure or a significant impairment of the func-

tionality of critical infrastructures or to threats to

public safety; and

3. that on the basis of a law regarding this provision

are designated as a critical component, or

realize a function designated as critical on the

basis of a law.

What’s Happening in the
European Union?
In July 2021, the ENISA issued a report titled

“Understanding the increase in Supply Chain

Security Attacks” that reviewed 24 different

software supply chain attacks and how they came

to fruition.

It found that:

 ⊲ “In order to compromise the targeted customers,

attackers focused on the suppliers’ code in about

66% of the reported incidents.”

 ⊲ “For 58% of the supply chain incidents analysed,

the customer assets targeted were predominantly

customer data, including Personally Identifiable

Information (PII) data and intellectual property.”

 ⊲ “For 66% of the supply chain attacks analysed,

suppliers did not know, or failed to report on how

they were compromised. However, less than 9% of

the customers compromised through supply chain

attacks did not know how the attacks occurred.”

More importantly, the report shared recommen-

dations that organizations should put in place.

While more guidance than regulation, it does

foreshadow what could come down the road.

Suggestions include:

 ⊲ identifying and documenting suppliers and

service providers;

 ⊲ defining risk criteria for different types of suppli-

ers and services such as supplier and customer

dependencies, critical software dependencies,

single points of failure;

“Attackers focused
on the suppliers’ code
in about 66% of the
reported incidents.”
— ENOSA report, “Understanding the Increase
 in Supply Chain Security Attacks”

362021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
E

M
E

R
G

E
N

C
E

 O
F

 S
O

F
T

W
A

R
E

 S
U

P
P

L
Y

 C
H

A
IN

 R
E

G
U

L
A

T
IO

N
 A

N
D

 S
T

A
N

D
A

R
D

S

https://www.bleepingcomputer.com/news/security/uk-govt-seeks-advice-on-defending-against-supply-chain-cyberattacks/
https://www.gov.uk/government/collections/cyber-resilience
https://www.buzer.de/BSIG.htm
https://www.buzer.de/BSIG.htm
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks

 ⊲ monitoring of supply chain risks and threats;

 ⊲ managing suppliers over the whole lifecycle of

a product or service, including procedures to

handle end-of-life products or components;

 ⊲ classifying of assets and information shared with

or accessible to suppliers, and defining relevant

procedures for accessing and handling them.

The report also suggests possible actions to assure

that the development of products and services

comply with security practices. Suppliers are

advised to implement better policies for vulnerabil-

ity and patch management.

Recommendations for suppliers include:

 ⊲ ensuring that the infrastructure used to design,

develop, manufacture, and deliver products, compo-

nents and services follows cybersecurity practices;

 ⊲ implementing a product development, maintenance,

and support process that is consistent with com-

monly accepted product development processes;

 ⊲ monitoring of security vulnerabilities reported by

internal and external sources that includes used

third-party components;

 ⊲ maintaining an inventory of assets that includes

patch-relevant information.

What’s Happening Globally?
May
In May 2021, the United Nations released a

report two years in the making from “the Group of

Governmental Experts on Advancing responsible

State behaviour in cyberspace in the context of

international security.”

Similar to actions at the national and regional

levels, the report touches on several areas of

cybersecurity, and provides guidance on the

“reasonable steps States should take to ensure the

integrity of the supply chain so that end users can

have confidence in the security of information and

communication technology (ICT) products.”

The report notes:

Ensuring the integrity of the ICT supply

chain and the security of ICT products, and

preventing the proliferation of malicious ICT

tools and techniques and the use of harmful

hidden functions are increasingly critical in that

regard, as well as to international security, and

digital and broader economic development.

Global ICT supply chains are extensive,

increasingly complex and interdependent,

and involve many different parties.

Reasonable steps to promote openness

and ensure the integrity, stability and

security of the supply chain can include:

(a) Putting in place at the national level

comprehensive, transparent, objective and

impartial frameworks and mechanisms for

supply chain risk management, consistent

with a State’s international obligations.

(b) Establishing policies and programmes to

objectively promote the adoption of good

practices by suppliers and vendors of ICT

equipment and systems in order to build

international confidence in the integrity

and security of ICT products and services,

enhance quality and promote choice.

(c) Increased attention in national policy

and in dialogue with States and relevant

actors at the United Nations and other fora

on how to ensure all States can compete

and innovate on an equal footing, so as to

enable the full realization of ICTs to increase

global social and economic development and

contribute to the maintenance of international

peace and security, while also safeguarding

national security and the public interest.

You can read the full list of guidance provided by

the United Nations.

June
In June 2021, the United States and the European

Union formed a Trade and Technology Council

(TTC). This was in part developed to work together

on the fight to secure critical technology and

software supply chains. According to the White

House, the TTC “will be composed of working

groups focused on advancing cooperation on tech

standards on artificial intelligence, the internet

of things and other emerging technologies, ICT

security, data governance, investment screening

and semiconductors.”

372021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
E

M
E

R
G

E
N

C
E

 O
F

 S
O

F
T

W
A

R
E

 S
U

P
P

L
Y

 C
H

A
IN

 R
E

G
U

L
A

T
IO

N
 A

N
D

 S
T

A
N

D
A

R
D

S

https://front.un-arm.org/wp-content/uploads/2021/06/final-report-2019-2021-gge-1-advance-copy.pdf
https://front.un-arm.org/wp-content/uploads/2021/06/final-report-2019-2021-gge-1-advance-copy.pdf
https://front.un-arm.org/wp-content/uploads/2021/06/final-report-2019-2021-gge-1-advance-copy.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2021/06/15/u-s-eu-summit-statement/

About the Analysis
The authors have taken great care to present statistically significant sample sizes with regard to

component versions, downloads, vulnerability counts, and other data surfaced in this year’s report.

While Sonatype has direct access to primary data for Java, JavaScript, Python, .NET and other

component formats, we also reference third-party data sources as documented. Further, Sonatype’s

research analyzed scan data from 100,000 anonymized, validated applications.

382021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Acknowledgments
Each year, the State of the Software Supply Chain report is a labor of love. It is produced to shed light on

the patterns and practices associated with OSS development and the evolution of software supply chain

management practices.

The report is made possible thanks to a tremendous effort put forth by many team members at Sonatype,

including: Bruce Mayhew, Dr. Stephen Magill, Matt Howard, Ax Sharma, Sal Kimmich, Elissa Walters,

Alli VanKanegan, Juan Morales, Moncef Ben-Soula, Cody Nash, Andrew Yorra, Brian Fox, Mike Hansen,

Joel Orlina, Melissa Schmidt, Ember DeBoer, Ilkka Turunen, Luke Mcbride.

We would also like to offer thanks for contributions big and small and for sharing perspective to our many

colleagues across the DevOps and open source development community.

A very special thanks goes out to Alli VanKanegan who created the incredible design for this year’s report.

392021 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Headquarters

8161 Maple Lawn Blvd, Suite 250

Fulton, MD 20759

USA • 1.877.866.2836

European Office

199 Bishopsgate

London EC2M 3TY

United Kingdom

APAC Office

5 Martin Place, Level 14

Sydney 2000, NSW

Australia

Sonatype Inc.

www.sonatype.com

Copyright 2021

All Rights Reserved.

Sonatype is the leader in developer-friendly, full-spectrum software supply chain management providing organizations total control of their

cloud-native development life cycles, including third-party open source code, first-party source code, infrastructure as code, and containerized

code. The company supports 70% of the Fortune 100 and its commercial and open source tools are trusted by 15 million developers around the

world. With a vision to transform the way the world innovates, Sonatype helps organizations of all sizes build higher quality software that’s more

aligned with business needs, more maintainable, and more secure. For more information, please visit Sonatype.com, or connect with us on

Facebook, Twitter, or LinkedIn.

https://www.sonatype.com/
https://www.facebook.com/Sonatype
https://twitter.com/sonatype
https://www.linkedin.com/company/sonatype

